Vibration Analysis of Arbitrary Quadrilateral Unsymmetrically Laminated Thick Plates

K. M. Liew*

Nanyang Technological University, 639798 Singapore W. Karunasena[†]

James Cook University, Townsville 4811, Australia and

S. Kitipornchai[‡] and C. C. Chen[§]
University of Queensland, Brisbane 4072, Australia

I. Introduction

ONSIDERABLE work has been devoted to the study of free vibration behavior of fiber-reinforced composite laminated plates.¹ The research was initiated because a fundamental understanding of the vibration behavior is of practical importance in many engineering applications. In this Note, the authors extend their earlier work^{2–6} to study the free vibration of thick unsymmetrically laminated quadrangular plates.

The p-Ritz method²- 6 is employed to derive the governing eigenvalue equation of the problem. The first-ordershear deformable plate theory proposed by Yang et al.⁷ (YNS) is used to account for the effects of the transverse shear deformation. The analysis method is capable of handling unsymmetric composite laminates of different boundary conditions, an arbitrary quadrilateral geometry, and anisotropic material properties. Thus, we believe a numerical tool with such capabilities, as proposed, is of great value for preliminary design of composite structures.

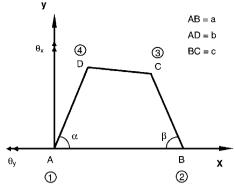
In this Note, convergence characteristics of the p-Ritz method are demonstrated through numerical examples. The accuracy of the results is verified by comparison with the existing literature. Moreover, the ANSYS finite element package is used to analyze the same example problems, and these finite element results can be used to further validate the accuracy of the p-Ritz method.

II. Mathematical Formulations

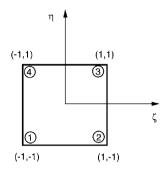
Consider an arbitrary flat quadrilateral plate of uniform thickness h, composed of any number of anisotropic plies oriented alternately at angles θ and $\underline{-}\theta$. The Cartesian coordinate system x-y located at the middle plane of the plate and the geometry of the plate with side lengths a, b, and c, and two angles α and β define the quadrilateral geometry (Fig. 1a). The material of each ply is assumed to possess a plane of elastic symmetry parallel to the x-y plane.

The plate under consideration is subjected to different combinations of free, simply supported, and clamped boundary conditions. The plate (Fig. 1) is described by a symbol defining the boundary conditions at their four edges, for instance, SCSF means a plate whose edges at AB, BC, CD, and AD are simply supported, clamped, simply supported, and free, respectively. The problem is to determine the natural frequencies of the plate.

The p-Ritz method, which was applied to solve plates in a rectangular domain, has been extended to an arbitrary quadrilateral domain using a geometric mapping technique. For convenience in numerical integration and application of the boundary conditions, the actual quadrilateral domain in the x-y plane has been mapped into a 2×2



a) Actual quadrilateral plate



b) Basic square plate

Fig. 1 Geometry and coordinate systems.

basic square domain in the ζ - η plane (Fig. 1b) using the coordinate transformation defined by

$$x = \sum_{i=1}^{4} N_i x_i \tag{1a}$$

$$y = \sum_{i=1}^{4} N_i y_i \tag{1b}$$

where x_i and y_i are the coordinates of the *i*th corner of the quadrilateral plate in the x-y plane.

The mapping functions N_i are defined by

$$N_i = \frac{1}{4}(1 + \zeta \zeta_i)(1 + \eta \eta_i)$$
 $i = 1, 2, 3, 4$ (2)

where ζ_i and η_i are the coordinates of the *i*th corner of the basic square domain in the ζ_i - η plane.

Using the chain rule of differentiation, the first derivatives of any quantity () in the two coordinate systems are related by

$$\begin{cases}
\partial_{x}() \\
\partial_{y}()
\end{cases} = J^{-1} \begin{cases}
\partial_{\zeta}() \\
\partial_{\eta}()
\end{cases}$$
(3)

where

$$\boldsymbol{J} = \begin{bmatrix} \partial_{\zeta} x & \partial_{\zeta} y \\ \partial_{\eta} x & \partial_{\eta} y \end{bmatrix} \tag{4}$$

in which J denotes the Jacobian matrix of the geometric mapping. For the laminated plate considered, the displacement and rotation components may be expressed by a set of p-Ritz functions in the ζ - η plane as

$$u(\zeta,\eta) = \sum_{i=1}^{p_1} \sum_{\alpha}^q a_i \phi_{xi}(\zeta,\eta) = \sum_{\alpha}^{m_1} a_i \phi_{xi}(\zeta,\eta) = \mathbf{a}^T \phi_x \quad (5)$$

$$v(\zeta, \eta) = \sum_{j=1}^{p_2} \sum_{j=1}^{q} b_i \phi_{yi}(\zeta, \eta) = \sum_{j=1}^{m_2} b_i \phi_{yi}(\zeta, \eta) = \boldsymbol{b}^T \phi_{yj}$$
 (6)

Received July 2, 1996; revision received April 5, 1997; accepted for publication April 8, 1997. Copyright 1997 by the American Institute of Aeronautics and Astronautics, Inc.

^{*}Senior Lecturer, Division of Engineering Mechanics, School of Mechanical and Production Engineering.

[†]Lecturer, Department of Civil Engineering.

[‡]Professor, Department of Civil Engineering.

[§] Postgraduate Student, Department of Civil Engineering.

$$w(\zeta, \eta) = \sum_{z=1}^{p_3} \sum_{z=1}^{q} c_i \phi_{zi}(\zeta, \eta) = \sum_{z=1}^{m_3} c_i \phi_{zi}(\zeta, \eta) = \mathbf{c}^T \phi_z$$
 (7)

$$\theta_{x}(\zeta,\eta) = \sum_{i=1}^{p_4} \sum_{j=1}^{q} d_i \psi_{xi}(\zeta,\eta) = \sum_{j=1}^{m_4} d_i \psi_{xi}(\zeta,\eta) = \mathbf{d}^T \psi_{x} \quad (8)$$

$$\theta_{y}(\zeta,\eta) = \sum_{p_{5}} \sum_{q}^{q} e_{i} \psi_{y_{i}}(\zeta,\eta) = \sum_{q}^{m_{5}} e_{i} \psi_{y_{i}}(\zeta,\eta) = \mathbf{e}^{T} \psi_{y} \quad (9)$$

where p_s (s = 1, 2, 3, 4, 5) is the degree of the mathematically complete two-dimensional polynomial space; a_i, b_i, c_i, d_i , and e_i are the unknown coefficients to be varied with the subscript i given by

$$i = \frac{(q+1)(q+2)}{2} - (q-r) \tag{10}$$

in which a, b, c, d, and e are the unknown coefficient vectors having a_i , b_i , c_i , d_i , and e_i as respective elements; $m_s(s = 1, 2, 3, 4, 5)$ are, respectively, the dimensions of a, b, c, d, and e given by

$$m_s = \frac{1}{2}(p_s + 1)(p_s + 2)$$
 (11)

 ϕ_x , ϕ_y , ϕ_z , ψ_x , and ψ_y are the *p*-Ritz function vectors whose elements are given by

$$\phi_{vi} = f_i \phi_{v1} \tag{12}$$

$$\phi_{vi} = f_i \phi_{v1} \tag{13}$$

$$\phi_{zi} = f_i \phi_{z1} \tag{14}$$

$$\psi_{xi} = f_i \, \psi_{x1} \tag{15}$$

$$\psi_{vi} = f_i \psi_{v1} \tag{16}$$

where

$$f_i = \zeta^{q-r} \eta^r \tag{17}$$

and ϕ_{x_1} , ϕ_{y_1} , ϕ_{z_1} , ψ_{x_1} , and ψ_{y_1} are the basic functions corresponding to u, v, w, θ_x , and θ_y , respectively. The basic functions consist of the products of boundary expressions of the laminated plate to ensure the automatic satisfaction of geometric boundary conditions.⁴

Following the p-Ritz procedures, 2 - 6 the governing eigenvalue equation of the problem has been derived and is given by

$$(\mathbf{K} \perp \Omega^2 \mathbf{M})\mathbf{q} = 0 \tag{18}$$

Standard eigenvalue solvers may be used to compute the natural frequencies of laminated quadrilateral plates by solving the general eigenvalue problem defined in Eq. (18).

III. Numerical Results and Discussion

A high-modulus graphite/epoxy has been used to study the vibration behavior of the unsymmetrically laminated composite plates. Each ply is a unidirectional fiber-reinforced composite possessing the dimensionless material properties of $E_1/E_2 = 40$, $G_{12}/E_2 = G_{13}/E_2 = 0.6$, $G_{23}/E_2 = 0.5$, and $V_{12} = 0.25$.

Table 1 presents the calculated natural frequency parameters for a moderately thick isotropic plate with a relative thickness ratio

Table 1 Comparison of frequency parameter $\lambda = \omega a^2 \int [\rho I(Eh^2)]$ of a square simply supported isotropic plate $(\nu = 0.3, 4/a = 0.1)$

	Mode sequence number				
Sources	1	2	3	4	5
$p_s = 4$	5.770	13.804	27.561	33.205	46.581
$p_s = 6$	5.769	13.764	26.040	32.689	43.567
$p_s = 8$	5.769	13.764	25.738	32.295	43.169
$p_s = 9$	5.769	13.764	25.734	32.294	42.421
$p_s = 10$	5.769	13.764	25.734	32.284	42.420
Mindlin's solution ⁸	5.77	13.7	25.7	32.2	42.3
Reddy's finite element solution ⁹	5.793	14.081	27.545	35.050	49.693

Table 2 Comparison of nondimensional fundamental frequency $\omega h \int [\rho_2 l(E_x)_2]$ of a simply supported three-ply orthotropic square plate $(h_1:h_2:h_3=0.1:0.8:1,\ h/a=0.1)$

		$(E_x)_1/(E_x)_2$					
Sources	1	2	3	4	5		
$p_s = 2$	0.0501	0.0605	0.0839	0.1122	0.1345		
$p_s = 4$	0.0474	0.0573	0.0796	0.1065	0.1278		
$p_s = 6$	0.0474	0.0573	0.0796	0.1065	0.1278		
Whitney and Pagano ¹⁰	0.0477	0.0578	0.0804	0.1077	0.1293		
Whitney and Pagano ¹⁰	0.0470	0.0567	0.0785	0.1048	0.1256		
Whitney and Pagano ¹⁰	0.0474	0.0573	0.0796	0.1065	0.1278		

Table 3 Nondimensional frequency parameter $\lambda = \omega a^2 \left[\rho I(E_2 h^2) \right]$ of a fully clamped four-ply quadrilateral laminated plate $(\theta I_- \theta I \theta I_- \theta I_-$

			Mode sequence number					
θ , deg	h/ a	Sources	1	2	3	4	5	
30	0.10	Authors	34.267 33.721	51.511 48.286	58.660 59.739	72.589	76.676 76.485	
	0.20	Authors	19.516 19.315	29.426 27.842	31.744 32.743	41.000 37.951	41.245 41.716	
45	0.10	Authors	35.482 34.355	56.347 52.332	57.741 58.408	77.789 73.114	81.190 77.834	
	0.20	Authors ANSYS	19.895 19.541	30.776 29.128	31.456 32.227	41.394 39.890	43.274 42.298	
60	0.10	Authors ANSYS	34.222 32.571	51.952 50.755	58.440 55.547	72.492 70.142	76.518 77.137	
	0.20	Authors ANSYS	19.483 18.979	29.581 28.971	31.660 31.056	40.285 39.244	41.744 42.590	

t/a = 0.10. These results are compared with the values from the Mindlin plate theory.^{8,9} For numeric computation, the degree of polynomials p_i increases from 4 to 10, which is equivalent to a variation in determinant size from 75 \times 75 to 330 \times 330. Clearly, the eigenvalues of lower modes converge relatively faster than the higher modes, and $p_i = 10$ is needed to give convergent eigenvalues. It is evident that the present results are in close agreement with the Mindlin solutions.^{8,9}

In Table 2, the fundamental frequency parameters for a simply supported three-ply orthotropic square laminated plate are given together with the values of the shear deformation theory and classical lamination theory. A convergence study has again been carried out by varying the number of degree of polynomials p_i for the laminated plate with various degree of orthotropy E_1/E_2 . It is obvious that a degree p_i of less than 4 (the determinant size is 75 \times 75) is more than enough to furnish convergent results inasmuch as only the fundamental frequency parameters are of interest in this comparison. The results obtained from the present analysis and the shear deformation theory of Whitney and Pagano¹⁰ are again in close agreement.

Table 3 shows a comparison of nondimensional frequency parameters for a fully clamped four-ply unsymmetrically laminated quadrilateral plate with stacking sequence (θ / θ / θ / θ) of relative thickness ratios θ / θ / θ / θ 0. The plate geometry is defined by parameters given as follows: θ / θ / θ 0. The plate geometry is defined by parameters given as follows: θ / θ 0. The ANSYS version 5.2 finite element package was also used to model the problem using the SOLID46 element with a 20 \times 20 \times 10 mesh. In general, the authors' results are in good agreement with the ANSYS finite element solutions.

IV. Concluding Remarks

This Note considers the vibration analysis of arbitrary quadrilateral unsymmetrically laminated composite plates using the p-Ritz method. The transverse shear deformation effect was incorporated in the mathematical model via the YNS first-order shear deformation theory. The accuracy of the method was established through convergenceand comparison studies. Because of a lack of published data for arbitrary quadrilateral laminated plates, the ANSYS finite element package was used to generate solutions for the purpose of comparison. In general, close agreements are obtained for all cases, thus verifying the accuracy of the present method.

References

¹Liew, K. M., Xiang, Y., and Kitipornchai, S., "Research on Thick Plate Vibration: A Literature Survey," Journal of Sound and Vibration, Vol. 180, No. 1, 1995, pp. 163-176.

²Liew, K. M., and Lam, K. Y., "Application of Two-Dimensional Orthogonal Plate Function to Flexural Vibration of Skew Plates," Journal of Sound and Vibration, Vol. 139, No. 2, 1990, pp. 241-252.

³Liew, K. M., and Lam, K. Y., "A Rayleigh-Ritz Approach to Transverse Vibration of Isotropic and Anisotropic Trapezoidal Plates Using Orthogonal Plate Functions," International Journal of Solid and Structures, Vol. 27, No. 2, 1991, pp. 189-203.

⁴Liew, K. M., Xiang, Y., Kitipornchai, and Wang, C. M., "Vibration of Thick Skew Plates Based on Mindlin Shear Deformation Plate Theory," Journal of Sound and Vibration, Vol. 168, No. 1, 1993, pp. 39-69.

Liew, K. M., Lam, K. Y., and Chow, S. T., "Free Vibration Analysis of Rectangular Plates Using Orthogonal Plate Function," Computers and Structures, Vol. 34, No. 1, 1990, pp. 79–85.

⁶Liew, K. M., and Lim, C. W., "Vibratory Characteristics of Pretwisted

Cantilevered Trapezoids of Unsymmetric Laminates," AIAA Journal, Vol. 34, No. 5, 1996, pp. 1041–1050.

⁷Yang, P. C., Norris, C. H., and Stavsky, Y., "Elastic Wave Propagation in Heterogeneous Plates," International Journal of Solids and Structures, Vol. 2, No. 4, 1966, pp. 665-684.

⁸Mindlin, R. D., Schacknow, A., and Deresiewicz., "Flexure Vibration of Rectangular Plates," Journal of Applied Mechanics, Vol. 23, No. 3, 1956, pp. 431-436.

⁹Reddy, J. N., "Free Vibration of Antisymmetric, Angle-Ply Laminated Plates Including Transverse Shear Deformation by the Finite Element Method," Journal of Sound and Vibration, Vol. 66, No. 4, 1979, pp. 565–576.

 $^{10} Whitney, J.\ M., and\ Pagano, N.\ J., ``Shear\ Deformation\ in\ Heterogeneous$ Anisotropic Plates," Journal of Applied Mechanics, Vol. 37, No. 2, 1970, pp. 1031-1036.

> A. Berman Associate Editor